1.捻度分布2 D; y+ c. _% K: e& i1 ?! `
捻度的获得一般都假设纱条是均匀的圆柱体。实际上,纱线的粗细是不均匀的,各截面面积不相等,截面转动惯性矩J的数值相差很大,对于圆柱体,J=π/32d4。若截面形状不同就更为复杂,而纱条的抗扭刚度G取决于J,因此,由于纱条各处的抗扭力矩不同,在一定的加捻扭转力矩下,各纱条截面上获得的捻回是不同的。从上述可知,捻度与纱条直径的四次方成反比,即T∝ 1/d4;与纱条特数的平方成反比,T∝ 1/Tt。因此,纱条截面粗的地方捻度少,截面细的地方捻度多。加捻后,在某一平衡状态下,纱条上有一个捻度分布状态。
( Z0 r9 f8 x, @) S0 L" v; H1 m/ S当纱所受外力发生变化,如张力和截面粗细改变时,各截面在外力作用下就产生新的扭转力矩和变形,使应力发生变化而产生各截面上扭转力矩的不平衡,捻回重新发生转移自行调整,达到新的平衡,获得新的捻度分布,这种现象称为捻度重分布。这种现象在后面涉及的有捻纱条牵伸如细纱的后区牵伸中尤其典型。% n( J% [" m n$ w( W# s( x" o1 A
2 F5 W: l1 Q6 ]8 t/ U/ {) f- @% x
, h0 T# a/ }- Q+ Z2 H
|